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A novel type of periodic motions in which a part of the trajectory is composed
of an infinite sequence of collision-collisionless segments, is investigated for
the systems with collisions, The problem of existence in the dynamic systems
with collision interactions of such a sequence was studied in [13, (%)

In analogy with other piecewise continuous systems, this sequence of motions

is called "slippage”, The case of an infinite sequence of collisions occurring in
a dynamic model of a clock movement was studied in [2], while the case aris-
ing in the process of impulsive braking with dry friction was studied in [3] under
the name of quasi-plastic collision,

The problem of constructing the boundaries of the slippage region in the phase
space is solved as well as that of defining the region of existence of stable peri-
odic motions with a slippage region, in the parametric space of a single~-mass
vibrating striker, )

The resuits of numerical computations are given for the oscillarions occurring
in the presence of an external periodic force, which are of greatest practical
importance, ‘

Numerous investigations of the dynamic models of the systems with impulsive
interactions have shown the existence of modes of varying complexity, the com-
plexity determined by the ratio of the periodicity of the motion to the periodici~
ty of the driving force and by the number of imipacts per single period of motion,
it was found that the increase in complexity is accompanied by appreciable
narrowing of the regions of existence and stability of the mode in the parametric
space,

The regions of existence of stable pertedic motions with an infinite convergent
sequence of collisions defined in the paramemic space of the vibrating ‘striker,
and of a simplest system containing two colliding pairs [4], were found to be of
the same order as the corresponding regions of the one-impact modes, This in-
dicates the practical importance of the motions with slippage for the systems
with collisions, The presence of such motions makes possible an interpretation
of a number of experimental results within the framework of the Newton's hyp-
othesis, Such would be e, g, the finite duration of impact of a vibrohammer
when the velocity restitution coefficient is different from zero [5 « 7] or the

*) The proof given in [1] and valid for the case in which the collisions are not accomp-
anied by jumps in acceleration can easily be extended to the case when such changes
exist and are caused by the linear frictional forces {4,
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manner in which the escapement of a marine chronometer interacts with a
shock bearing, the interaction consisting of the first, not completely elastic
collision followed by a second inelastic collision, with subsequent motion under
a kinematic constraint [8],

1, Construction of the boundaries of the slippage region in the
phase space, The model of a vibrating striker adopted here consists of a mass m
attached to a spring with a linear characteristic /- and subjected to the action of an ex-
ternal perturbation defined as a sum of F sinw? and a constant force P, The displace-
ment z of the mass M is restricted by a fixed barrier and on making a contact with the
barrier the mass undergoes an instantaneous collision with the velocity restitution coe-
fficient being equal to K, When the elastic constraint is not deformed, the gap between
the mass m and the fixed barrier is characterized by the parameter D).

Starting with the usual assumptions [9] and choosing y = F ' @® mz and T = ot
as the dimensionless variables, we arrive at the following equations:

The equations of collisionless motion
y*' 4+ Ay = — A*d + sin T, y >0 (1.1)

The collision interactions
y, = — Ry, y=20 (1.2)

and the equation describing a possible state of kinematic constraint between the mass
and the barrier

y =1y =0, sint — A2d < 0 (1.3)

Here the position of the phase point at the surface IT of the collision interactions is
taken as the origin 4 = 0, the symbols ¥-"and ¥,  denote the precollision and post-
collision velocities of the mass m The dimensionless eigerffrequency A of the vibrating
striker and the gap d are expressed in terms of the initial parameters by

232 = kmlw™, d= —F1(moD + P A3
Thus the behavior of the system (1,1) - (1, 3) depends on three real parameters }, d
and ! varying over the limits
0<Ch<<oo, Jd<<oo, O0S<R<1
The phase space of this system formed by the coordinates 4, y', « is threedimensional,
According to [1], the region [ which we call the slippage plate, is situated on the

surface [] near the boundary
y= 0, y =0, y*t<<0

N o*

After the representative point -1/ (7, 3, 1) has arrived at II, , its further motion takes
place along the phase trajectory consisting of an infinite sequence of collision~-collision-
less intervals and terminates at the "point of convergence” i, whose coordinates are
found from the conditions

y=y=y"=0 ¥ >0

For the present mathematical model of the vibrating striker the coordinates of the point
of convergence are

gy = U, v = 0, Ty = arcsin A% (1.4)
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During the motion that follows, the representative point moving along the trajectory
emerging from ./, leaves the region [[, and enters the half-space y >~ U. Let us de-
note by 7' a point ransformation which maps the surface Il onto itself and is generated
by two consecutive parts of the motion, the collision interaction and the collisicnless
motion, When I — o , the point of convergence 1/, is the limit of the convergent
sequence of transformations 7' of the region II, into itself. The problem of establi-
shing the exact boundary of the slippage plate consists of finding a limit set in the nei-
ghborhood of which on one side we find only the points which are transformed into .i/,
by 7% , and no such points on the other side, The required boundary of [T , consists of
the negative part of the y™ -axis and of a curve |V emerging from { ,and situated in
the region ¥y = 0, y <0, < (. [11. This suggests a simple method of obtaining

the boundary curve |} ,based on iterating the inverse point transformations 7~ It is
sufficient to construct a sequence of approximations W, = 7~ (i})), for which
Wo==dim T (1)
1=+

Here W, is the initial approximation, The process W’; converges to the limiting set
W from the inside of II,if ¥, == II, and from the outside, when W', = Ii . We
note that a segment of an arbitrary curve emerging from M, and situated within the
half-space y == 0, y" << (} can serve as the initial approximation I,

The magnitude of the accelerations in the system (1,1) to (1, 3) remains unchanged
during the collisions, We can therefore prescribe the initial approximation W, = Il;
using the conditions ensuring that the curve [1]
aMm—> _ Y,

U Y <y ()<Y, T <7
o 2t L —yr(T) 51— H)

0L — (1) <l —=2—- 0L Y <
<M< 3~ V& ook’ SOt S T2%AY

lies on the slippage plate, At the point of convergence (1,4) the quantity y™ (1) =
= €OS T and is therefore bounded from above by the value Y = 1. The solution
y () of the Eq, (1.1) describing the collisionless motion is written in terms of funct-
ions whose Taylor expansions have unbounded radii of convergence Ty. As a result we
obtain the initial approximation in the form

5(1— R) ., e
———5—" (Ad — sin T)®

24R
a . 9R — 5
— 5~ < v<aresin A, COS T > —5m—

y'=—

On the other hand, we can use the segment
y=0, y-;__()’ yu>0

of the half-axis adjacent to the point of convergence as the intial approximation IV,
With such an initial approximation we can determine the slippage region by construct-
ing a sequence of iterations ¥} disposed outside the plate IT..

The equations of the point transformation 7' mapping I into itself and defined by
the system of equations (1,1) and (1, 2), is written in the form

A1 (y;® — o cos T;) sin A (1; — T;y) + d +
+(asint; —d)cosA {t; — 1,y —oasint,_; =0 (1.5)
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Alasint; —d) sind(ty — 1y —y+
+ acosty — (Ry's_; + & €08 Ti-3) €08 A (T — Ty~y) = 0 (1.6)
a=(A\-—-1)

Using the recurrent relations (1, 5) and (1, 6) (which can also be studied using the method
developed in [11]) we can find the coordinates of the point M;, provided that the co-
ordinates of the preceding point /{; are already known, Specifying successively the
point M; on the curves W,, W,, W,,..., we obtain the points Jf,_, belonging to the
curves W,, Wp,W,,...
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Fig, 1, Fig, 2.

Figure 1 depicts the results of computing a sequence of iterations W, for R = 0.2,

A= 0.3 and @ = — 5.3, The family of the limit sets W shown in Fig, 2 was constructed
for R = 0.2 and various values of A and d. In all cases two processes of consecutive
approximations W;, one situated inside and the other outside the region I, ,were con-
sidered, We note that for i »» 3 the curves ‘W; of both sequences become practically
identical, Equations (1, 5) and (1, 6) indicate that the slippage plate grows in size with-
out bounds in the negative direction of the y°-axis as R — 0,

2, Construction of the region of existence of stable periecdic
motions with slippage in the parametric space, The slippage mode
terminates at the point of convergence, The motion which follows is realized along the
phase trajectory of collisionless motions emerging from J/, , until some instant T >
> 1T, corresponding to the successive arrival of the trajectory at the point My onII
The relations determining the motion of the vibrating striker during the time interval
To << T<T; are obtained from the solution of (1,1) with the initial conditions coin-
ciding with the coordinates of the point of convergence (1,4), In consequence we have
the following system of equations determining the coordinates of the point M, ©, y',

") Ald — asin T, + (@ sin T, — d) cos A (r; — T,)] +

4+ acos Ty sin A(ty — Tp) = 0 2.1
A(d— asinty) sind(t; — 7o) + 41 +
+ & [cos T, cosh (1, — T) —cosT] =0 (2.2)
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Here T, is the smallest root of (2,1) satisfying condition T3 > Ty.

If the phase point Af, lies within II,, then the subsequent motion will again be, for
a certain period of time, a slippage motion, The period 2;rn of such simplest forced
oscillations with slippage region is defined as the time elapsed between two consecutive
passages of the phase point through M ,,and n = 1,2,3,... denotes the ratio of the
period of the forced oscillations to the period of the external harmonic. force,

The region of existence of periodic motions with slippage is situated between two suz-
faces in the paramemric space. One of these surfaces denoted by C, comesponds to the
degeneration of periodic motions containing an infinite sequence of collisions into a
mode containing a finite number of collisions per period, while the other bifircation
surface is defined as the boundary of the region of existence of real values of 1, the
region defined by the inequality [A2d| <C 1. Obviously, the surface C; represents the
combinations of the values of the parameters A, ¢ and R, which ensure that the point
M, belongs to the carresponding boundary set 1§ (A, d, R). Thus the properties of the
branching surfaces shown above enable us to determine the region of existence of the
periodic motions with slippage in the paramerric space of the dynamic system under
consideration, The corresponding forced oscillations are stable, since a sét mapped
into itself (the point of convergence) is of zero dimension,

The genersl approach to constructing the boundary surface C, described above is
reduced to performing some numerical scheme whose structure would lend itself to
processing in the form of a machine algorithm, For this reason further studies were con-
ducted with the help of a digital computer,

Figure 3 shows various sections Dy, of the re-

4 / / 7 gion of existence of stable periodic motions
/ : s with slippage produced by the planes R = const.

! / / The subscript 1 appearing in the fotation of
§ , these intersections ind{cates that the frequency
/ L #-gg|  ©f the periods » = 1. For a given value of R
/ : <77 the region Da is contained between the bound-
' &\ ‘ég | ary |A*d| =1 and the corresponding curve be-
2 277 T longing to the family shown on the figure,
. ‘2& The results obtained indicate that:stable per-
i — Z 2 pTT 2#7|  iodic motions with slippage can be realized for
» ‘ | both, the positive and the negative values of

{2 54 7 ¢ the gap and for any value of the velmity res -
Fig, 3. titution coefficient within 0 < R < 1. When
the latter value is small, the intervals of vari-.
ation of A and d become very large, Comparison with the results of [9] shows that when
R — 0, the boundary of 0, mwansforms continuously into the boundary of the region
of e:dstem and stability of the simplest, one-collision oscillations with a halt, Thus,
when R increases from zero in a sufficiently smooth manner, the one-collision oscilla«
tions with a halt transform into the oscillations with slippage region, giving rise to pe~-
riodic motions with a finite number of collisions per period,

3, Discussion of results, Modelling, Itis known that the behavior of
the model considered within the framework of periodic motions with a finite number
of collisions per period gives insufficient agreement with the experiment when the velocity
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restitution coefficient is small, The periodic motions observed experimentally in{5]and
6] are characterized by the fact that the duration of the collision interactions differs
appreciably from zero and that the region of existence and stability in the parametric
space is extended towards the large values of ) and is larger than predicted theoretically
in [9], This cannot be explained by considering the periodic motions with a finite num-
ber of collisions per period; the regions of existence of these motions narrow to such an
extent that they fail to overlap the inevitable scatter of the parameters of the real struc-
tures, Even the assumption that the collision interactions are completely inelastic does
not lead to a satisfactory computing scheme,

The present results indicate that the observed discrepancy between the theory and ex~
periment can be explained in physically meaningful terms by the fact of existence of
slippage, Indeed, when R — (O, the slippage may occur in a region belonging to the
phase space and increasing without bounds, and periodic motions with slippage can be
realized in an appreciable part of the parametric space adjacent to the region of one ~
collision oscillations,

Although the duration of the slippage mode can, in general, be of considerable length,
the duration of the separate intervals of the collisionless motion diminishes rapidly as
the phase point approaches the point of convergence, For this reason, remembering that
experiments have limited accuracy, we can naturally interpret the essential duration of
the collision interactions [5 and 6], in accordance with the Newton's hypothesis, as an
extension of the slippage mode. The experimentally observed widening of the regions
of existence of one-collision periodic motions stems from the fact that the latter motions
are difficult to distinguish from the periodic motions with slippage, when the values of
the parameters fall near the boundary of C,. The basic results obtained here were con-
firmed by investigating the equations (1.1) to (1, 3) on an analog computer, Here we
stipulated a switchover of the scheme given by [10] to modelling the motion of the
kinematically constrained (by (1. 3)) elements under the assumption that the relative
post-collision velocities in the slippage mode are sufficiently small,

[ sVl

Fig, 4,

Figure 4 a, b, represents the oscillograms of the periodic motions with slippage for
the following values of the parameters on D,

() R=06, d=16, A=15
(b) R = 0.15, d = —0.04, = 0.97
In conclusion we note that a simple approach in investigating the distinctive features
of the existence of the slippage mode combined with computerized iteration of the co-
rresponding point transformations make possible a sufficiently exhaustive study of the
periodic motions containing an infinite sequence of collisions,



850

9.

Iu.3.Pedosenko and M.I.Peigin

BIBLIOGRAPHY

Feigin, M,I,, Slippage in dynamic systems with collision interactions, PMM
Vol, 31, N3, 1967,

Bautin, N,N,, A dynamic model of a watch movement without a characteris-
tic period, Inzhenernyi sb,, Vol 16, 1953,

Nagaev, R, F, and Nakhamkin, L,A,, Ona quasi-plastic collision,
Izv, Akad, Nauk SSSR, MTT, N1, 1969,

Feigin, M,I,, Special features of the dynamics of the systems with collision
interacti ons connected with the existence of slipping motions, Coll, Mekhanika
Mashin, M,, "Nauka", N81 and 32, 1971,

Lukomskii, S,I,, Performance investigation of the operating conditions of
vibrohammers, Tr, VNH-Stroidormasha, M,, N24, 1959,

Lukomskii, S,1., Problems of establishing a computation scheme for a vibro-
hammer,, Tr, VNIIStoidormasha, M,, N33, 1963,

Fedosenko, Iu,S,, On establishing a method for computing dynamic systems
of vibro-striking plunging, Izv, vuzov, Radiofizika, Vol, 13,08, 1970,

Bautin, N, N,, and Cherniagin, B, M,, A theoretical and experimental
study of the dependence of the dynamic characteristics of 2 marine chronometer
on the position of the balance spiral shoe, 1zv, Akad, Nauk SSSR, Mekhanika i
Mashinostroenie, N2, 1963,

Bespalova, L,V,, On the theory of vibrating-striker mechanism,, Izv, Akad,
Nauk SSSR, OTN, M5, 1957,

10, Feigin, M,I,, Resultsof the study of a system with collision interactions

using 2 model, Tr, Gor’kovsk, in-ta ingh, vodn, transp, M., "Vysshaia Shkola,
Ne83, 1967,

11, Nagaev, R,F,, An analytic description of a quasi-plastic collision, Izv,

Akad, Nauk SSSR, MTT, N4, 1970,
Translated by LK.



