
A novel type of periodic motion3 in which a part of the trajectory fs composed 
of an infinite sequence of co~~s~~a~o~s~on~s segments, is ~n~sr~~ated for 

the r;trstemS Wittr cOlIfSi@tB, The ~o~iem of exis@EXe in the dynamic systems 
with co%ision inter4KXions of such a sequence was studied in [I$ (*) 

In analogy with othr?r piecewise continuous systems, this sequence c$f motions 
is called “slippage”, The case of alt infinite sequerxca af collisiorrs occurring in 
a dynamic model of a clock movement was studied in @J while the case aris- 

ing in the $?roce33 of 1mpuMve braking with dry fricrion was studied in ES3 under 
the name of quasi-plastic colision. 

The problem of constructing the boundaries of the slippage region in the phase 

S~WZX? is solved as well as that of d&king the region of existence of stable peri- 
odic motion3 with %L sllppage region, in the parametric space of a single-mass 

vibrating striker, 
The resirh of ~~~~T~~~~ ~~~~r~~~ zre given 5~ the ~c~~~~i~~ occ~r~ng 

in the presence of an external periodic force, which are of greatest practical 

importance. 

Numerous investigations of the dynamic models of the systems with impulsive 
interactions have shown the existeucs of modes of varying complexity, the com- 

plexity determined by the ratio of the periodiciry of the motion to the periodici- 

ty of the driving force and by the number of irnp~ac~~ per single period of motion, 

It was found that the increase in ccmp1exity is accompanied by appreciable 
n&rrowing of the regions of existenca and stability af the mode in the parametric 

space, 
The regions of existence of stable periodic motions with an infinite convergent 

sequence of collisions defined in the parametric space of the ~~b~at~n~ striker, 

and of a simplest system containing two colliding pairs [lr]. were found to be of 

tha same order as the corresponding regions of the one-impact modes, This in- 
dicates the practical importance of the motions with slippage for the systems 
with coilisions. The presence of such motions makes possible an interpretation 
of a number of expc;rimsntal results within the framework of the N~ton’s hyp- 
arksis, Such would be e, g_ the finite duration of impact of a ~~br~~ammer 
when the velocity restitution coefficient is different from zero ES - T] or the 

*) The proof given in [I] and valid for the ca3e in which the collisions are not accomp- 
anied by jump3 in acceleration can easily be extended to the case when such changes 

exist and are caused by the linear frictionA%~ forces [4]. 
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manner in which the escapement of a marine chronometer interacts with a 
shock bearing, the interaction consisting of the first, not completely elastic 
collision followed by a second inelastic collision, with subsequent motion under 

a kinematic constraint [8]. 

I, Construction of the boundrriel of the 8llpprgc region in the 
phrlc cprcc. The model of a vibrating striker adopted here consists of a mass m 
attached to a spring with a linear characteristic I,, and subjected to the action of an ex- 

ternal perturbation defined as a sum of I; sinor and a constant force P. The displace- 
ment 2 of the mass m is restricted by a fixed barrier and on making a contact with the 

barrier the mass undergoes an instantaneous collision with the velocity restitution Coe- 

fficient being equal to fi. When the elastic constraint is not deformed, the gap between 

the mass m and the fixed barrier is characterized by the parameter Ii. 

Starting with the usual assumptions [9] and choosing Y = F-’ CO’ mx and z = or 
as the dimensionless variables, we arrive at the following equations: 

The equations of collisionless motion 

Y” + AsY = - As d +- sin t, Y>O (1.1) 

The collision interactions 
Y+’ = - R!J_*, 9 = 0 (1.2) 

and the equation describing a possible state of kinematic constraint between the mass 

and the barrier 
?/ -= Y’ = 0, sin T - h2d < 0 (1.3) 

Here the position of the phase point at the surface n of the collision interactions is 
taken as the origin Y = 0 , the symbols Y-’ and Y/t’ denote the precollision and post- 
collision velocities of the mass m The dimensionless eigerffrequency 3L of the vibrating 
striker and the gap d are expressed in terms of the initial parameters by 

^2 h = x./)L-*o-2, d= - F-l (mo~2P + P lbm2) 

Thus the behavior of the system (1.1) - (1.3) depends on three real parameters A, d 
and R varying over the limits 

o<;.< W, ldl < 039 O&R<1 

The phase space of this system formed by the coordinates !I, Y’, T is threedimensional. 
According to [ 11, the region 1 I,, , which we call the slippage plate, is situated on the 
surface I] near the boundary 

11 -= 0, Y’= 0, Y” < 0 

After the representative point .]I (!I; Y’, 7) has arrived at II,? , its further motion takes 
place along the phase trajectory consisting of an infinite sequence of collision-collision- 

less intervals and terminates at the “point of convergence” ,Ji, whose coordinates are 
found from the conditions 

Y = Y’ = Y” = 0, Y”’ > 0 

For the present mathematical model of the vibrating striker the coordinates of the point 
of convergence are 

Y” = 0. z/o’ = 0, T,, - arcsin A”d (1.4) 
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During the motion that follows, the representative point moving along the trajectory 
emerging from :\1, leaves the region r1, and enters the half-space y >- 0. Let US de- 

note by 1’ a point transformation which maps the surface n onto itself and is generated 
by two consecutive parts of the motion, the collision interaction and the collisionless 
motion, When i 3 03 , the point of convergence .\I, is the limit of the convergent 
sequence of transformations T’ of the region IT, into itself. The problem of establi- 
shing the exact boundary of the slippage plate consists of finding a limit set in the nei- 

ghborhood of which on one side we find only the points which are transformed into .\I ,) 

by 7” t and no such points on the other side. The required boundary of n, consists of 
the negative part of the y” -axis and of a curve !%’ emerging from .$f,and situated in 
the region y =- 0, y/’ < 0, y” ( C. [l]. This suggests a simple method of obtaining 
the boundary curve W ,based on iterating the inverse point transformations T-’ It is 
sufficient to construct a sequence of approximations IYi = I’-’ (ii’,,)! for which 

Here bT’, is the initial approximation. The process ]4/i converges to the limiting set 
Iiv from the inside of n,, if CV’, s fl, and from the outside, when M’,, 5 I! . . We 

note that a segment of an arbitrary curve emerging from /\I, and situated within the 

half-space y -: 0, y’ < 0 can serve as the initial approximation IF’, 
The magnitude bf the accelerations in the system (1.1) to (1.3) remains unchanged 

during the collisions. We can therefore prescribe the initial approximation \I,‘, Z 11, 

using the conditions ensuring that the curve [l] 

lies on the slippage plate. At the point of convergence (1.4) the quantity y/“’ (r) = 
= coS t and is therefore bounded from above by the value Y = 1. The solution 

ZJ (t) of the Eq, (1.1) describing the collisionless motion is written in terms of funct- 

ions whose Taylor expansions have unbounded radii of convergence t*. As a result we 

obtain the initial approximation in the form 

y’ = - 
5 (I- I?) 

24R (hV - sin r)s 

- + < z < arcsin h’d, 
9R-5 

cosz >- 12R 

On the other hand, we can use the segment 

y = 0, y’ = 0, y” > 0 

of the half-axis adjacent to the point of convergence as the intial approximation iI’, 
With such an initial approximation we can determine the slippage region by construct- 
ing a sequence of iterations :r’r disposed outside the plate nE,. 

The equations of the point transformation I’-’ mapping n into itself and defined by 

the system of equations (1.1) and (1.2). is written in the form 

A-l (yli’ - a cos To) sin k (ti -- TV_,) A- d -C 

+ (a sin ‘ti - d) cos h (TV - zi_J - a sin T~_~ = 0 (1.5) 
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L (a sin q-1 - a) sin I (?* - 71,J - y“ + 

+ a cos Tt - (@i&l + a CO8 Z[-1) 005 k (q - Tpl) = 0 

a = (AS - i)-’ 
0.6) 

US@ the recurrent relations (1.5) and (1.6) (which can ala0 be studied using the method 
developed in [ll]) we can find the caxdinates of the point M+, provided that the CO- 

ordinates of the preceding point M f are already known. Specifying SuCCWdVCly the 

point Mi on the curves W,, WI, TV,,..., we obtain the points ML~ belongtng to the 
ems WI, w,,w, ,... 

Fig. 1. Fig. 2. 

Figure 1 depicts the results of computing a sequence of iterations IV, for R - 0.2, 
b - 0.3 and d = - 5.3. The family of the limit sets W shown in rig. 2 was constructed 
for R - 0.2 and various values of X and d. In all cases two processes of consecutive 
approximations Wi, one situated inside and the other outside the region IT, ,were con- 
sidered. We note that for i > 3 the curves I.+‘* of both sequences become practically 
identical Equations (1.5) and (1.6) indicate that the slippage plate grows in sine with- 
out bounds in the negative direction of the v’-axis as R -+ 0. 

2. Conrrruction of the region of exlctenca of stable periodic 
motionr with rlipprge fn the prramrttic apaca, The slippage mode 
terminates at the point of convergence. The motion which follows is realized along the 
phase trajectory of collisionless motions emerging from M, , until some instant 71’ > 
> ZO corresponding to the successive arrival of the trajectory at the point M I on D 

The relations determining the motion of the vibrating striker during the time interval 
%I < Z < Z1 are obtained from the solution of (1.1) with the initial conditions coin- 
ciding with the coordinates of the point of convergence (1.4). In consequence we have 
the following system of equations determining the coordinates of the point MI (0, ?/I*, 

rr) : 
A [d - a sin v1 + (cc sin z. - d) cos A (zI - To)1 + 

+ acosT~sin3L(~,-Tz,) = 0 (2.1) 
h (d - a sin zO) sin 5 (q - TV) + yl’ -t 

+ a Los z. co& h1 - TO) - 00s z,l = 0 (2.2) 
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Here 71 is the smallest root of (2.1) satisfying condition 21 > ro. 
If the point Mx lies within n,, then the subseoutmt motion will again be, for 

a Min period of time, a Slippage mot&% The period 2s~ of such simplest forced 
oscillations with slippage region is defined as the time elapsed between two consecutive 
passages of the phase point through lIzlO ,add n = 1,2,3,. l * denotes the raUo of the 
period of the forced oscill&tions to the period of the external harmonic force, 

The region of existenoe of pubdic motions with slippage is situated between two SUI- 

faces in Zhe pirameafc space, One of these surfaces denoted by C, corresponds to tbe 
degeneration of period&2 motions containing an infinite seqrrc?nce of co2Bsions into a 
mode conWining a fin&e number of col&s~om per period. while the other bifurcation 
surface is defined as the boundary of the region of existence of real values of r,, the 
region defined by the inequality @adI < 1. Obviously, the surface C, represents the 
~~~Uo~ of the values of the parameters h, d and R, which ensure that the point 
~?#i belongs to the corresponding botlndarg set w @, d, Rf, Thus the properties of the 
branching surfaces shown above enable us to determine the region of existemze of the 
periodic motions with slim@ in the parametric space of the dynamic sysrem under 
consideration. The cotrespendfng forced oscillations are stable, since a set mapped 
into itself (the point of convergence) is of zero dfmension, 

‘Rse gewraf appztsr& to cawzuc~ the botmdsq~ surface C, described above is 
reduced to perfurming some numerical scheme whose smtc&re would &end itself to 
proces&g in the form of a machine algorithm, For this reason further studies were con- 
ducted with the help of a digital computer, 

Fig. 3, 

Figure 3 shows various secrions Dsr of the re- 
gion of existence of stable periodic motions 
with sI.ippage produced by the planes R = cork%. 
The subscript 1 appearing in the noWion of 
these intersections indicates that the fkequency 
of~G~odsng1~Foragfvenvral~of R 
the region &I is ooatained between the bound- 

ary 1 Pfl I = 1 and the ~~~~ curve be- 
longs to the family shown on the Agure~ 

The results obtained indicate tbat&ible per- 
iodic motions with slippage can be realized for 
both, the positive iand the negsdvie values of 
the gap snd for any value of the urslocity res - 
utution coefficient wfthin 0 < R < i, when 
the latter value is small* the intervals of vari- 

aUon of h and d become very large. Comparison with the results of f9j shows that when 
R + 0 , tie boundary of Dgl transforms continuously into rhe boundary of tke region 

of existenoe and stability of the simplest, oue-collision oscillations with a ha-lt. Thus, 
whenR incmasts from ne\ro in a ~~~~~ smooth maimer, the one-colIisionossdlla- 
Uons with a halt ~a~~rn fnto the oscillations with slippage regim giving rise. to pe- 
riodic motiolla with a finite number of col&&ns per per%& 

3. Dl~clttrtLon of Falult#, Modalllag, It is known that the behavior of 
the model considered within the framework of periodic motions with a finite number 
of CollWons per perid gives insufficient agreement with the experiment when the velocity 
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restitution -efficient is small. The periodic motions observed experimentally in C53and 
61 are characterized by the fact that the duration of the collision interactions differs 
appreciably from zero and that the region of existence and stability in the parametric 
space is extended towards the large values of h and is larger than pedicted theoretically 
in 19). This cannot be explained by considering the periodic motions with a finite num- 
ber of collisions per period; the regions of existence of these motions narrow to such an 
extent that they fail to overlap the inevitable scatter of the parameters of the real struc- 
tures. Even the assumption that the collision interactions are completely inelastic does 
not lead to a satisfactory computing scheme. 

The present results indicate that the observed discrepancy between the theory and ex- 
periment can be explained in physically meaningful terms by the fact of existence of 
slippage. Indeed, when & + 0 , the slippage may occur in a region belonging to the 
phase space and increasing without bounds, and periodic motions with slippage can be 
realized in an appreciable part of the parametric space adjacent to the region of one - 
collision oscillations. 

Although the duration of the slippage mode can, in general, be of considerable length, 
the duration of the separate intervals of the collisionless motion diminishes rapidly as 
the phase point approaches the point of convergence. For this reason, remembering that 
experiments have limited accuracy. we can naturally interpret the essential duration of 
the collision interactions [5 and 61, in accordance with the Newton’s hypothesis, as an 
extension of the slippage mode. The experimentally observed widening of the regions 
of existence of one-collision periodic motions stems from the fact that the latter motions 
are difficult to distinguish from the periodic motions with slippage, when the values of 
the parameters fall near the boundary of C,. The basic results obtained here were con- 
fiimed by investigating the equations (1.1) to (1.3) on an analog computer. Here we 
stipulated a switchover of the scheme given by [lo] to modelling the motion of the 
kinematically constrained (by (1.3)) elements under the assumption that the relative 
post-collision velocities in the slippage mode are sufficiently small_ 

a b 
Fig. 4. 

Figure 4 a. b. represents the oscillograms of the periodic motions with slippage for 
the following values of the parameters on D,, 

(a) R = 0.6, d = 1.6, h = 1.5 
(b) R = 0.15, d = -0.01, h = 0.97 

In conclusion we note that a simple approach in investigating the distinctive features 
of the existence of the slippage mode combined with computerized iteration of the co- 
rresponding point transformations make possible a sufficiently exhaustive study of the 
periodic motions containing an infinite sequence of collisions. 
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